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An exact non-reflecting boundary condition is devised for use in solving the reduced wave 
equation in an infinite domain. The domain is made finite by the introduction of an artificial 
boundary on which this exact condition is imposed. In the finite domain a finite element 
method is employed. Although the boundary condition is non-local, that does not affect the 
efficiency of the computational scheme. Numerical examples are presented which show that 
the use of the exact non-local boundary condition yields results which are much more 
accurate than those obtained with various approximate local conditions. The method can also 
be used to solve problems in large finite domains by reducing them to smaller domains, and 
it can be adapted to other differential equations. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

To solve the reduced wave equation numerically in an unbounded domain, it is 
usual to introduce an artificial boundary 93 to make the computational domain 
finite. Then some boundary condition must be imposed on ~3. We shall show how 
to obtain an exact boundary condition there and how to combine it with the finite 
element method in the computational domain. This leads to an efficient method 
which eliminates the defects, such as spurious reflections from 49, which arise in 
other procedures. 

We shall also show how to solve a problem in a large finite domain by cutting 
out a large regular subdomain, thus introducing an artificial boundary 33. This 
leaves a smaller computational domain bounded in part by 93. On 93 we shall again 
obtain an exact boundary condition and use it with the finite element method in the 
computational domain. 

Naturally there has been a great deal of previous work on these subjects. In order 
to see how the present work is related to it and to what extent the present work 
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is novel, we shall describe some of the previous methods. The simplest and most 
usual boundary condition is 

U”(X) = iku(x), xong. (1) 

Here U(X) is the unknown scattered field, U, is its outward normal derivative, and 
k is the wave number. This condition is of the same form as the Sommerfeld 
radiation condition, which is exactly correct when imposed at infinity but only 
approximately correct when imposed at a finite boundary g. As a consequence the 
use of (1) leads to the spurious reflection of waves from 9. The magnitude of the 
reflected wave increases the more the direction of the wave u deviates from the 
direction normal to g’, so it increases as .@ is moved closer to the scattering region. 

In order to diminish the spurious reflection, various authors have devised 
improved local boundary conditions. Engquist and Majda [l] did so by expressing 
u,, exactly as a pseudodifferential operator applied to u on 9, and then approximat- 
ing this operator by the local differential operators given in (65) and (66) below. 
Bayliss and Turkel [2] used the asymptotic expansion of u far from the scatterer 
to obtain similar approximate local boundary conditions. Feng [3] obtained an 
exact non-local condition involving an integral over g of u multiplied by a Green’s 
function, and then he approximated it by various local conditions, such as (67) 
below. However, all these local boundary conditions still lead to spurious reflection. 

Gustafsson and Kreiss [4] considered a hyperbolic system of equations for two 
functions of x, y, and t in a waveguide. They obtained an exact non-local boundary 
condition involving the Fourier coefficients of the solution and discussed its use in 
a finite difference method. Hagstrom and Keller [S] formed an exact boundary 
condition in a cylindrical domain in terms of the eigenfunctions and eigenvalues of 
a problem in the cross section of the cylinder. They also proved the existence of an 
exact boundary condition for certain nonlinear problems and gave an asymptotic 
expansion for it. Ting and Miksis [6] obtained an exact boundary condition by 
expressing u on &J as an integral of u and U, over a surface interior to 8, using the 
free space Green’s function. 

The work most closely related to ours is contained in Fix and Marin [7], 
MacCamy and Marin [S], Marin [9, lo], and Goldstein [ll]. In all of them an 
exact boundary condition is imposed on a and the finite element method is 
employed in the computational domain. In [7] this boundary condition is found 
analytically for a waveguide and some numerical results are given. In [8] 2-dimen- 
sional exterior domains are considered. The boundary condition involves the 
solution of an integral equation on g for which numerical methods of solution are 
given. The convergence of the finite element method with this boundary condition 
is proved. A summary of these results and a numerical example are presented in 
[9]. Goldstein [ 1 l] presents a survey of previous work and gives a convergence 
proof for the finite element method with an exact boundary condition on .%Y in the 
case of 2-dimensional exterior problems and waveguides. 

In contrast with the method of MacCamy and Marin [S] and Marin [9], we 
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choose $9 to be a circle in 2-dimensional exterior problems and a sphere in 3-dimen- 
sional ones. As a consequence we can express the exact boundary condition 
explicitly in terms of known functions rather than in terms of the solution of an 
integral equation which is obtained numerically. This results in a simpler and more 
accurate method, which is similar to that used by Fix and Marin [7] for 
waveguides. It enables us to discuss the bandedness of the finite element stiffness 
matrix, the separability of the integrals in the boundary condition, and the best 
choice of the radius of 99 in terms of the computational accuracy and cost. 

We shall present the solutions of some test problems obtained by our method. 
We shall compare them with exact solutions and with numerical solutions involving 
the Sommerfeld condition (1) the Engquist-Majda conditions (65) and (66) and 
the Feng condition (67). 

We shall also obtain the exact boundary condition explicitly for Laplace’s 
equation in both exterior and interior domains. Then we shall present a simple 
convergence proof of the finite element method with this boundary condition. 

At first sight it seems that the non-locality of the exact boundary condition might 
spoil the banded structure of the finite element matrix, and the complexity of this 
condition might require a great deal of computation. However, neither of these dif- 
ficulties occurs. In fact our results using the non-local conditions are more accurate 
than those obtained by using approximate local conditions, and they require about 
the same computational work. 

In Section 2 we present the finite element formulation for the reduced wave 
equation in an infinite domain. The exact boundary condition is formulated in 
Section 3, where we also show how the method can be applied to large finite 
domains. The convergence of the scheme and some computational aspects are 
discussed in Sections 4 and 5. In Section 6 we present some numerical results and 
compare them to those obtained by using the approximate local boundary 
conditions proposed by other authors. 

2. FINITE ELEMENT FORMULATION 

We consider the following problem for a solution u of the inhomogeneous 
reduced wave equation in an infinite domain 9 bounded internally by the surface 
r= l-, v r,, of an obstacle: 

V2u+k2u+f =0 in 9 (2) 

u=g on r, (3) 

u,, = h on r, (4) 

lim rcdp ‘)‘*(u, - iku) = 0. 
r-x (5) 

Here k, A g, and h are given functions, d is the spatial dimension, and (5) is the 
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Sommerfeld radiation condition. We assume that outside a sphere (or circle) B of 
radius R, f = 0 and k is constant. 

In order to solve the problem numerically we define a computational domain IR 
which is bounded internally by r and externally by the artificial boundary 53. (See 
Fig. 1.) The domain outside &?, 5% - 52, we denote D. 

On ~33 we impose the boundary condition u,, = -Mu. Here M is an operator 
called the Dirichlet to Neumann (DtN) map, because it relates the Dirichlet datum 
ZJ to the Neumann datum u, on ~3. This is an exact boundary condition and will 
be discussed in detail in the next section. We then replace (2t(5) by the equivalent 
problem 

V*u+k*u+f =0 in Q (6) 

u=g on r, (7) 

u, = h on r, (8) 

ld,= -MU on LR (9) 

To obtain a weak form of this problem we introduce the two function spaces 

Y= {uJuEH’(Q)andu=gonr,} (10) 

and 
Y,,= {wlwEH’(Q)andw=Oonr,), 

where H’ is the Sobolev space defined by 

(11) 

Then (6)-(9) is equivalent to the following variational problem: 
Find u E Y such that for all w E .P& 

4w u)+Ww, u)=(wf)+ (w, h),, (13) 

D 

(12) 

FIG. 1. Geometry of a typical reduced wave equation problem. 

581/82/l-12 
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where a(w,u)= (Vw.Vu-k*wu)dG? s (14) n 

b(w, 24) = s WMU dG? (15) a 
(16) 

(w,h)r= jrhwhdl-. (17) 

In order to solve this variational problem by the Galerkin method, we introduce 
finite dimensional subspaces of 9’ and YO, denoted respectively Yh and 9’:. Then 
we consider the following approximation to (13): 

Find u~EY’ such that for all why Yt, 

a(Wh,z4h)+b(Wh,Uh)=(Wh,f)+(Wh,h)j-. (18) 

To construct the finite element spaces .5fh and Yt, we discretize Q into a finite 
number of element domains. Each element is associated with a finite number of 
nodes on its boundaries and possibly in its interior. We define qg to be the set of 
all nodes on the boundary f, where u is prescribed, and q to be the set of all the 
other nodes, at which the value of u is unknown. (See Fig. 2.) We introduce a shape 
(or basis) function N, for each node A E q, and a shape function Ns for each node 
A E qg. Then the functions tih and wh are assumed to have the form 

uh(x)= c dANA( 1 gAW(x); gA = dxA) for A E vg (19) 
AEV A E 1~ 

FIG. 2. Typical discretization of the computational domain 0. Also shown is the set qa of all nodes 
on r,. 
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and 

wh(x)= 1 CANA( (20) 
AEV 

Here d, and cA are constants and xA is the physical point at node number A. 
We now substitute (19) and (20) into (18). Since wh and therefore cA are 

arbitrary, the expression multiplying cA must vanish for each A. This results in the 
finite element matrix formulation of the problem: 

Kd=F 

K=K”+Kb 

(21) 

(22) 

K” = C&,1, Kb = CKkl, d = {d,}, F= {FA) (23) 

K:B = dN,, N,), Kf;, = b(N.4, N,) 

FA=(NA,~)+(NA~~)~- C g,[a(NA,N~)+b(NA,N~)]. 
Bttl* 

(24) 

(25) 

Here A and B on the left-hand side of (24) and (25) are the positions in the matrix 
or vector corresponding to nodes A and B. The number of equations in the linear 
algebraic system (21) is equal to the number of nodes in q. Its solution d determines 
the finite element solution uh via (19). 

The finite element method requires that the shape functions NA and Ns ‘be 
continuous and of local support. It is standard to define N, and Ns to have the 
value 1 at node A, to equal zero at every other node, and to vanish outside a local 
patch of elements which share node A. We note that the last term in (25), 
b(N,, Ng), vanishes because each N; is identically zero on the boundary %Y. 
Therefore (25) becomes 

This equation and (22) show that the effect of the DtN boundary condition on the 
standard finite element scheme is just the inclusion of Kb in the matrix K in (21). 
Furthermore, K;, is nonzero only if both nodes A and B lie on the boundary B. 

Usually the locality of the shape functions makes the matrix K banded, because 
there is no interaction between two nodes not belonging to the same element. Here, 
however, KiB is nonzero for any pair of nodes A and B on B, due to the non-local 
character of b(N,, NB) in (15). This seems to spoil the bandedness of K, but in fact 
it does not. This is because finite element schemes usually employ the “skyline” 
method, in which only the portion of K from the diagonal to the upper “skyline” 
of the matrix (i.e., up to the last nonzero entry in each column) is stored and 
operated on. The best simple method of numbering the nodes is that illustrated in 
Fig. 3. It consists in numbering circumferentially, and shifting one node “back- 
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FIG. 3. Optimal node numbering of a typical mesh. 

wards” when advancing outward from one line to the next. With this numbering, 
the pairs (A, B) of nodes on the boundary B are all below the “skyline” of the 
matrix. 

3. THE DtN BOUNDARY CONDITION 

The way to find the DtN boundary condition on B is to solve the Dirichlet 
problem in the external domain D. We choose Z# to be a circle or sphere of radius 
R and then this problem is 

V2u+k2u=0 in D (27) 

u = u(R, 0) on S? (28) 

lim rcdp ‘)“(u, - iku) = 0. (29) r-cc 

In two dimensions the solution of (27)-(29) is 

u(r, ‘3) = i nz; J-1’ $‘))g) cos n(e - e’) u(R, fl’) de’. 
n 

(30) 

Here HA” is the Hankel function of the first kind. The prime after the sum indicates 
that a factor of 4 multiples the term with n = 0. We now differentiate (30) with 
respect to r and set r = R to obtain 

m, (e - et) u(R, et) de’ (31) 

k H;“‘(kR) 
m,(e-e’)= -- 

n IfA” 
cos n(e - et). (32) 



NON-REFLECTING BOUNDARY CONDITIONS 179 

In (32) the m,,(tl- 0’) are the DtN kernels, the symmetry of which is responsible 
for the symmetry of Kb in (22). When u(R, 0) in (30) is replaced by the finite 
element solution Us evaluated at x on @, (30) yields the approximate value of 
U(T, 19) at points outside S?. 

In three dimensions the solution of (27)-(29) is 

x P~(cos~)P~(cosq5’)cosj(&8’)u(R,8’,~’)dcW. J (33) a 

Here dB’ = R2 sin 4’ dtl’ dq+‘, and Pi is the associated Legendre function of the tirst 
kind. From (33) we obtain the DtN boundary condition 

u,(R e,d)= - f J- m, (e,h e’,47 m of, 4) dg’, (34) n=O 3 

where the DtN kernel is 

m, Ut 4, et, 4’) = i’ Bjnp;I; (COS 4) P!(COS 4') c0s j(e - et) 
j=O 

(35) 

fl, = _ P+l)(n-.d! Y, 
Jfi 2nR2(n +j)! (36) 

y = (aIaR)CR-“‘H~‘1,,,(kR)l ” R - 1’2H;y 1,2 (kR) ’ 

We shall now show how to use the method we have presented to solve problems 
with large finite domains. To do so we consider a finite domain W with an 
irregularly shaped boundary 8%‘. We suppose that f is zero and that k is constant, 
except in a region near &A?. To obtain a small computational domain D we cut out 
of S? a spherical or circular domain D within which f = 0 and k is constant. In D 
the solution u can be obtained analytically in terms of its values on S? = dD. Thus 
the computational domain Q = &? - D is bounded internally by ?+J and externally by 
i?R, so the bigger D is the smaller Q is. 

The finite element formulation is exactly the same as that given before, but the 
DtN map is different. To obtain it we solve the problem (27) and (28). Then we 
find that (30~(37) hold with the Hankel function Hi” replaced everywhere by the 
Bessel function J, . Thus (32) becomes 

k J;(kR) m,(e-et)= - -~ 
n J,(W 

cos n(e - ef) (38) 
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and (37) becomes 

y 
n R-“2J 

nt 1,2(W . 
(39) 

Since this DtN boundary condition is real, the whole problem is real. 
All the preceding considerations apply to the Laplace or Poisson equation to 

which (2) reduces when k = 0. Then (5) is replaced by the simpler condition that 
u tends to zero at infinity. By letting k tend to zero in (30)-(39) we can obtain the 
corresponding solutions and DtN boundary conditions for Laplace’s equation in D. 
Alternatively we can solve Laplace’s equation directly. In either way we find that 
outside a circle of radius R, u is given by 

u(r, 13) = ; n’f, (R/r)” jin cos n( 8 - e’) u( R, e’) de’. (40) 

Then we find that the boundary condition (31) holds with m,(0 - 0’) given by 

Exactly the slame expression (41) applies when D is the interior of the circle. An 
alternative closed form solution for U, in terms of u can be given, but it is less 
convenient computationally. 

Suppose that k = 0 and that the Neumann condition is given on all of r, so that 
r= r,,. Then the solution of the original problem (2t(4) does not vanish at infinity 
unless f and h satisfy the condition 

(42) 

When this condition holds, the problem (6)-(9) has a solution but it is unique only 
up to an additive constant. This solution can be made unique by requiring that 

s u(R, e) de = 0. (43) 24 

Instead of imposing (43) we can include the constant m,(8 - 0’) = l/nR in (41) to 
get the modified DtN boundary condition 

&(R, e) = - -& j:z u(R, e’) de’ - n$ 2 J:’ COS tI(e - e’) u(R, e’) de’. (44) 

The additional term will not contribute anything to U, if (43) is satisfied, but it will 
render the solution of (6)-(9) unique. Furthermore, it is easy to show that this 
unique solution satisfies (43). 
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4. CONVERGENCE 

We shall now examine the convergence of the numerical procedure for Laplace’s 
equation, which is the special case of the reduced wave equation with k =O. The 
proof in this case is much simpler than those for k # 0 given by MacCamy and 
Marin [S] and Goldstein [ 111. 

For k = 0 with a local condition instead of the DtN boundary condition the proof 
is standard and can be found in Strang and Fix [12]. It is composed of three 
ingredients. The first is the best approximation property: the finite element solution 
uh is the best among all members of Yh in that it gives minimal error in the “energy 
norm” a(u, 0) . ‘I2 This can be stated as 

a(24 - uh, u - u”) < a(u - ii, 24 - ii), vii E Yh. (45) 

The second ingredient is the following approximation theorem: If u E HP+’ then 
~U,E Yh such that 

Ilu - ur II, < thP, (46) 

where p is the highest degree of complete polynomial in Yh, c is a constant depend- 
ing only on U, h is the mesh parameter, and I] . I] 1 denotes the norm in H ‘. The last 
ingredient is the equivalence of the norm )I . ]I 1 with the “energy norm” a( , . )1/2: 

cl II41 I d 40, ~1”~ 6 c2 Ilull 1 VUE9& (47) 

Combining (45), (46), and (47) yields 

Ilu-uhlll<chP 

which is the standard error estimate. 

(48) 

When the DtN operator b(., . ) is included in the left side of (13) the “energy 
norm” is no longer a(u, u)“~, but rather [a(u, u) + b( u, II)]“‘. The best approxima- 
tion property becomes 

a(u-Uh, u-uh)+b(u-Uh, U-U”) 

<a(u-11, u-ii)+b(u-ii, u-ii) viiE~h (49) 

and to recover the usual error estimate (48) it remains to show that 

cl II4 1 < Ca(u, VI+ Ho, ~11”~ d c2 1141 VUE9& (50) 

Now, since (47) is known to hold, the proof will be complete if we show that 

O<b(u,u)< Ilull: VVE.9& (51) 

We shall suppose first that D is infinite. The left inequality of (51), namely the 
positivity of b(u, u), can be shown directly from the form of the DtN kernels (41) 
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or in the following more general way. Any v defined on ?J can be extended to all 
of D such that it satisfies V*v = 0 there and vanishes at infinity. Thus, the DtN 
boundary condition is satisfied on a and we have 

b(v, v) = s, viklv dB = - s, vu, d&9 

= V~(VVV)dx s D 

= vv~vvdx>o. I (52) 
D 

To prove the right-hand inequality in (51) we assume that r= r,. Then we 
denote by w0 the function that minimizes the Dirichlet integral over Sz among all 
functions in Y0 which are equal to v on 9. Thus 

(53) 

Here I/ . Ilo denotes the norm in L,. Now we extend w,, to be identically zero inside 
the region enclosed by IY Then we consider the space of functions 3 which are in 
H’(Q), where Q is the disk or ball bounded by W. We let W minimize the Dirichlet 
integral over Q among all functions in q which are equal to v on g. The function 
wO, extended to be identically zero in the region enclosed by r, is one of 
these functions, and its Dirichlet integrals over Q and CJ are equal. Thus 
IIVw,II~> IlVWlli. Upon combining this inequality with (53) we get llvll: > IlVWlli. 
But W is the solution of V* W = 0 in Q with W= v on g’. Then by proceeding as 
in (52) and noting that the kernels m,,(tl - 0’) are the slame for the interior of 99 
and for the exterior, we get 

(54) 

This is the desired inequality (51). 
When D is finite the proof still applies, with Q denoting the domain exterior 

to La’. 
Thus the DtN finite element formulation for Laplace’s equation converges with 

the standard finite element rate of convergence. When the sum in (31) is truncated 
after N terms, there is an additional error which decreases to zero as N tends to 
infinity. 

5. COMPUTATIONAL ASPECTS 

We have already observed that the DtN boundary condition does not interfere 
with the symmetry and bandedness of the finite element matrix. Now we are going 
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to derive explicit expressions for the DtN term Kb. To do so we note first that the 
DtN kernels m,(x, x’) are separable. For example, in the 2-dimensional case we 
have from (32) 

k Hf”(kR) 
m,(&O’)= - - 

7c H”‘(kR) 
(cos ne cos n0’ + sin n0 sin ney. (55) 

n 

For all the cases considered here (i.e., the reduced wave equation and Laplace’s 
equation in two and three dimensions) we can write 

Mu(x) = f UjFj(X) Ja F,(x’) u(x’) dx’, x on CS. 
j=O 

Now from (24) and (15) we have 

K;, = b( N, , NB) = s N, MN, dg 
a 

NJx)F;(x)dS? 
>( 

[ NB(x)I;;(x)d&’ (57) 
P 

Therefore, in a d-dimensional problem, only integrals of dimension d- 1 have to be 
computed to form Kb. Moreover the Fj are simple trigonometric functions (or in the 
3-dimensional case polynomials in trigonometric functions) which suggests evaluat- 
ing the integrals explicitly. Altogether we have to evaluate n, integrals for each j, 
where n, is the number of nodes on PJ. The integration associated with node A has 
to be performed only over the sides of the elements connected to the node, because 
the shape function NA(x) is identically zero elsewhere. 

The storage associated with the DtN term is therefore O(n,). The addition of this 
term to the finite element matrix must be performed on the “global level,” not on 
the “element level,” since assembling small element matrices into the global matrix 
is not possible here. 

The coefficients uj in (56) are the expressions involving the Bessel functions in 
(32) (37), (38), and (39). The cost of computing them is marginal because there are 
typically only a few of them (depending on the number of harmonics that are taken 
into account), and they have to be evaluated only once for each choice of kR. In 
fact, they can be tabulated once for an interval of values of kR and used as needed. 

The main additional time-consuming step in using the DtN boundary condition 
is the evaluation of the integrals in (57) involving trigonometric expressions. This 
time can be reduced by evaluating the integrals explicitly, as was mentioned before. 
But in any case, this computational effort is insignificant for a “large” problem, 
where the dominant cost is that associated with the large number of elements in the 
mesh rather than with the nodes on part of the boundary. 

We now consider how to choose the two parameters R, the radius of the bound- 
ary 9#‘, and N, the number of terms to be used in the DtN map. When the DtN map 
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is given by a closed-form expression the choice of R does not affect the accuracy, 
but in the more common case increasing R, as well as increasing N, will improve 
accuracy. 

First of all, in the case where the original domain is finite and k # 0, certain 
values of the radius R are not permitted. These are the values that make the 
denominator of one of the coefficients in (38) or (39) vanish. In fact to avoid large 
round-off errors one should not use values of R which make this denominator very 
small. In other words, R should be chosen such that kR is not very close to a root 
of J, in two dimensions or to a root of Jn+ ,,2 in three dimensions. This considera- 
tion applies to the values of n ranging from 0 to N. No such restriction exists in the 
case where the original domain is infinite or where k = 0. 

For fixed R and h there is a certain N which is optimal, in the sense that no addi- 
tional accuracy can be gained by taking N larger. This value N,,, occurs when the 
finite element discretization error equals the series truncation error. In the case of 
Laplace’s equation it is possible to estimate Nopt very crudely in the following 
manner. 

The rate of convergence of the finite element method in the L, norm can be 
shown to be p + 1, which is higher by 1 than the H, convergence rate (see (48)). 
Empirically the pointwise rate of convergence is usually the same as that of the L, 
norm. Thus we write the finite element error in the form 

e f,e, = chP + ‘. (58) 

The truncation error due to neglecting terms after the Nth term can be estimated 
by 

a 
e;Y= 1 u(*)(R, 0) 2: u““‘(R, tl), (59) 

n=N+I 

where u@) is the nth term in the expansion of U. Now u(N) can be written as TNR-N, 
where T, is a function of 9 but does not depend upon R. Therefore we have 

ey= TNRpN. (60) 

Equating (58) and (60) and taking the logarithm of both sides results in 

logc+(p+l)logh=logT,-NlogR. (61) 

Assuming that c and TN are of order one with respect to R and h, we can neglect 
log c and log TN in comparison with the other terms, and obtain 

log h 
Nopt= -(P+ I)- log R 

which is the desired estimate. 

(62) 
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Numerical experiments show that formula (62) is a quite reasonable although 
crude estimate. For example, with bilinear quadrilateral elements (p = 1 ), R = 2, 
and uniform radial spacing of h = 0.2, (62) yields 4.6 whereas numerical experiments 
yield Nap, = 3. With R = 2.5 and h = 0.75, (62) gives 0.62 versus the experimental 
Nopt = 1. 

A reasonable order of choosing the computational parameters is as follows. First 
the boundary r is discretized, according to the shape of r and the accuracy desired 
of the solution. This determines h and the circumferential discretization of the 
domain. Now there are two extreme approaches to choosing R and N. The first is 
to take the smallest R possible which bounds the “irregular” region (i.e., put $!I as 
close as possible to I- in Fig. 1). Substituting this R into formula (62), yields the 
corresponding Nopt . The other extreme is to take N = 1 in (62) and find the corre- 
sponding radius R. In the first approach the computational domain, and hence the 
finite element cost, is minimized, whereas in the second the DtN cost is minimized. 
An intermediate choice is probably preferable. R and h determine the shape of the 
whole mesh since all the elements should have aspect ratios close to one. 

6. NUMERICAL EXPERIMENTS 

A number of approximate local boundary conditions have been suggested for use 
in numerical schemes for solving the 2-dimensional problem. Those which are 
compatible with the finite element method have the form 

2 --u,=c,u+c2f-$ on LB. 

They yield exactly the same finite element formulation as in Section 2 with 

b( w, u) = C, s, wu d.98 - C2 i, $ $ dS?. 

(63) 

The simplest approximate boundary condition is the Sommerfeld radiation 
condition (5) applied on $8, which corresponds to C, = -ik, C2 = 0 in (63). To 
demonstrate its deficiency we compare the result of using it with that of using the 
DtN boundary condition in the problem of a point source in an infinite plane. 
Figure 4 shows the mesh, composed of linear triangles and bilinear quadrilateral 
elements. The source is located at a node which is three nodes from the boundary. 
We use k = 1, R = 1, and 4 terms in the DtN kernel. Figures 5 and 6 are contour 
plots of the imaginary part of the solution for the DtN and the Sommerfeld bound- 
ary conditions, respectively. The crudeness of the mesh is responsible for the 
unsmooth “circles” in the DtN case. The figures show that the Sommerfeld condi- 
tion yields a severe spurious reflection from the artificial boundary but the DtN 
condition does not. 
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FIG. 4. Mesh for the point source problem. 

FIG. 5. The point source problem: contour plot of the imaginary part of the solution with the DtN 
boundary condition. 
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FIG. 6. The point source problem: contour plot of the imaginary part of the solution with the 
Sommerfeld boundary condition. 

In Table I we compare the results using the two boundary conditions quan- 
titatively. We list the values of the imaginary part of the exact solution at various 
points on the artificial boundary,together with the values obtained by using the 
Sommerfeld and the DtN conditions, as well as their relative errors. The results 
obtained with the DtN boundary condition are better by far. It took 8.3 s to run 
the scheme using the Sommerfeld condition, and only 0.4 s more to run the one 
using the DtN condition. 

Next we consider the problem of a circular boundary in an infinite plane with 
nonuniform boundary values. Figure 7 shows the mesh, where the radius of the 
boundary is a = 0.5, %J is taken at R = 1, k = 1, and the elements are bilinear. The 
boundary value is cos $9, where j ranges from 0 (uniform boundary value) to 5. 

TABLE I 

The Point Source Problem: The Imaginary Part of the Solution 
at Various Points on the Artificial Boundary 

e Exact DtN Sommerfeld (S,) DtN error S, error 

-45” 0.2413 0.2419 0.3308 0.2% 37.1% 
0” 0.2193 0.2195 0.2320 0.1% 5.8% 

45” 0.1704 0.1696 0.1136 0.5% 33.3% 
90” 0.1268 0.1256 0.0468 0.9% 63.1% 

135” 0.1103 0.1089 0.0261 1.3% 76.3% 
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FIG. 7. Mesh for the non-uniform circular boundary problem. 

Beside the Sommerfeld condition, three other approximate boundary conditions are 
examined: 

E,: -u”=( -ik+&) u; 

(66) E,: -uv=(-ik+&)u-(A+&)$; 

A,: 
1 

-ll,= -ik+--- l + 
2R 8kR2 

E, and E, were proposed by Engquist and Majda [l] and A, by Feng [3]. 
Figure 8 illustrates the real part of the’solution along the boundary g for the case 
j= 2. The exact solution is given by (30) where the integration is over the inner 
boundary, and R is replaced by a. The DtN solution is hardly distinguishable from 
the exact solution, while the solutions using E,, E,, and A, are off by about 25% 
at the peaks. The solution based on the Sommerfeld condition is the least accurate. 
The scheme using A3 took 10 s to run; that using the DtN-half a second more, 
including the evaluation of four coefficients in the DtN kernel (32). 

We have computed the exact solution and those based on the DtN and the A, 
boundary conditions for 0 <j d 5. In Table II we list their values on the boundary 
L?.# at 0 =O, together with their relative errors. The results show that both finite 
element solutions deteriorate when j becomes large. This occurs because the 
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FIG. 8. The non-uniform circular boundary problem: comparison between various solutions for the 
boundary value cos 28. The real part of the solution along the boundary 93 is displayed. 

elements are too large to accommodate so large a variation and because only four 
terms are used in the DtN kernel. However, for j < 3 the relative error of the A, 
scheme is larger than that of the DtN scheme by an order of magnitude. The DtN 
error remains small for all j < 3 while the A, error increases rapidly with j. This is 
related to the fact that all the approximate boundary conditions are most accurate 
for waves which hit the artificial boundary normally, and they become less accurate 
as the incidence becomes more oblique. 

To demonstrate how the DtN method works on a problem with a finite domain, 

TABLE II 

The Non-uniform Circular Boundary Problem: 
Results Are Given at 0 = 0 on the Boundary z?# 

i Exact DtN A, DtN error 

0 0.630 0.632 0.589 0.35% 
1 0.565 0.568 0.503 0.55% 
2 0.303 0.305 0.225 0.36% 
3 0.138 0.135 0.080 2.61% 
4 0.067 0.059 0.027 10.8% 
5 0.033 0.024 0.009 26.1% 

A, error 

6.4% 
10.9% 

25.7% 

42.5% 
58.8% 

73.1% 
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we consider a 2-dimensional problem in the interior of a circle. The circle is of 
radius a = 1, u is prescribed as zero on its boundary, and k = 1. In addition, on a 
circular arc of 45” with radius r = f we prescribe u = 1. We introduce the artificial 
boundary at R = 0.5 and again use the mesh in Fig. 7. Note that the DtN boundary 
condition (31) (38) is applied along the inner boundary. The line where u = 1 is 
represented by an arc of six nodes, at a distance of one layer of elements from the 
outer boundary. Figure 9 is a contour plot of the solution. The values vary from 0 
on the outer boundary to 1 on the arc. 

We close with an application of the DtN boundary condition (31), (41) to 
Laplace’s equation outside a circular boundary with the boundary value cos 28. We 
use exactly the same setup as before, only now k = 0. We will use two approximate 
boundary conditions on the artificial boundary, either u = 0 or u, =O, since the 
exact solution and all of its derivatives tend to zero at infinity. In Fig. 10 a com- 
parison is made between the exact solution and those obtained using the DtN and 
the two approximate boundary conditions. The values shown lie on the circle r = 3, 
which is at a distance of one layer of elements from the inner boundary. The 
superiority of the DtN boundary condition over the two approximate ones is 
apparent again. At points closer to the artificial boundary the solution using the 
DtN condition is equally good, while the approximate solutions are even less 
accurate. 

In order to use the approximate boundary condition, we might attempt to put 
the artificial boundary at a larger distance from the source, where the approximate 
boundary condition is more accurate. But then if we do not want to increase the 
cost by adding more elements to the mesh, we must “stretch” the mesh radially, 

FIG. 9. The 45” circular arc problem: contour plot of the solution with the DtN boundary condition. 
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FIG. 10. The Laplace problem: comparison between various solutions for cos 20 distribution on the 
inner boundary. The solution along the circle r = 3 is displayed. 

resulting in slender elements. Numerical tests show that the ill-shaped elements 
have the effect of deteriorating the results even more. Thus no matter where the 
artificial boundary is placed, the solution using the DtN condition is more accurate 
than those using approximate boundary conditions. 

7. SUMMARY 

We have shown how to obtain explicitly the exact Dirichlet-to-Neumann 
boundary condition on an artificial boundary for the reduced wave equation and 
for Laplace’s equation in infinite domains and in large domains. When applied in 
conjunction with the finite element method it results in an efficient and accurate 
scheme. The non-locality of the boundary condition has no effect on the banded 
structure of the finite element matrix, and the cost due to the complexity of the 
boundary condition is marginal. 
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